Math 103 Day 12: Maximum and Minimum Values and Linear Approximation

Ryan Blair

University of Pennsylvania
Thursday October 21, 2010

Outline

(1) Maximum and Minimum Values and Linear Approximation

We want to be able to find the minima and maxima of functions

Definition

A function f has an absolute maximum at c if $f(c) \geq f(x)$ for all x in the domain of $f . f(c)$ is the maximum value of f.
A function f has an absolute minimum at c if $f(c) \leq f(x)$ for all x in the domain of $f . f(c)$ is the minimum value of f

We want to be able to find the minima and maxima of functions

Definition

A function f has an absolute maximum at c if $f(c) \geq f(x)$ for all x in the domain of $f . f(c)$ is the maximum value of f.

A function f has an absolute minimum at c if $f(c) \leq f(x)$ for all x in the domain of $f . f(c)$ is the minimum value of f

Definition

A function f has an local maximum at c if $f(c) \geq f(x)$ when x is near c. A function f has an local minimum at c if $f(c) \leq f(x)$ when x is near c.

Theorem

(Extreme Value Theorem)
If f is continuous on a closed interval $[a, b]$, then f attains an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ at some numbers c and d in $[a, b]$.

Theorem

(Fermat's Theorem)
If f has a local maximum or minimum at c, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

Theorem

(Fermat's Theorem)
If f has a local maximum or minimum at c, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

Definition

A Critical Number of a function f is a number c in the domain of f such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

The Closed Interval Method

To find the absolute maximum and minimum values of a continuous function f on a closed interval $[a, b]$:

Step 1: Find the values of f at the critical numbers of f in (a, b).
Step 2: Find the values of f at the endpoints of the interval.
Step 3: The largest of the values from step 1 and step 2 is the absolute maximum value; the smallest of the values from step 1 and step 2 is the absolute minimum value.

Linear Approximations

The tangent line at $(a, f(a))$ is an approximation of $f(x)$ when x is near a.
The tangent line to $f(x)$ at the point $(a, f(a))$ is given by the formula

$$
y=f(a)+f^{\prime}(a)(x-a)
$$

Definition

The linearization of f at a is given by:

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

